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A method is presented for extracting from the differential cross section for the {e,Nef) reaction the dif­
ferential cross section for the corresponding (y,N) reaction. Here N refers to a nuclear particle of spin 0 
or J. This method is developed for arbitrary multipoles, thus extending the result given by Bosco and Fubini 
for El transitions. A model is used in which the ejected nuclear particle moves initially in a potential well 
provided by a nuclear core, and has a definite total angular momentum. The electrodisintegration process 
is considered to take place in such a fashion that the nuclear core is in the same state initially and finally. 
The electron is treated in Born approximation. In addition to the results for arbitrary multipoles, the 
interference of the El term with £0, Ml, and E2 terms is studied in detail. Both the differential cross section 
in outgoing electron and nuclear particle directions, as well as that pertaining to the angular distribution 
of the latter particle alone, are given. Lastly, the case of a pure Ml transition is considered. 

I. INTRODUCTION 

THE use of inelastic-electron scattering in the study 
of nuclear structure is made particularly attrac­

tive by the fact that the interaction of the electron with 
the nucleus is purely electromagnetic, and hence well 
known. This same fact means that in some respects the 
inelastic electron-scattering process is similar to the 
analogous process induced by a real photon.1 Indeed, 
one of two points of view may be taken in performing 
inelastic electron-scattering experiments. The first of 
these consists in using the electron in order to probe 
those features of nuclear structure which are necessarily 
inaccessible to real photons, since for electrons the 
momentum-transfer four vector is not a null vector, but 
is spacelike.2 The second approach arises from the fact 
that the electron is a more convenient experimental 
tool than the photon, and it is desirable to perform 
electron experiments with a view to extracting from 
the data the relevant parameters in equivalent photon 
experiments without actually doing the latter.3 In doing 
this, some of the more extensive information of the 
electron experiment is lost, and so this procedure is to 
be regarded as a matter of expediency rather than as an 
ultimate goal. It is the purpose of the present work to 
consider this second point of view in the study of the 
electrodisintegration problem. 

Earlier work on this problem4 has used the Born 

* This work was supported by the U. S. Atomic Energy Com­
mission. 

1 J. M. Eisenberg and M. E. Rose, Phys. Rev. 131, 848 (1963). 
2 See, for example, Kurt Gottfried, in Direct Interactions and 

Nuclear Reaction Mechanisms, Proceedings of an International 
Symposium, Padua, September 1962, edited by E. Clementel and 
C. Villi (Gordon and Breach, Science Publishers, Inc., New York, 
to be published). 

3 An example of this approach is the use of virtual photon 
spectra, see W. C. Barber, in Annual Review of Nuclear Science, 
edited by E. Segre (Annual Reviews Inc., Palo Alto, California, 
1962), Vol. 12, p. 1. 

4 B . Bosco and S. Fubini, Nuovo Cimento 9, 350 (1958). This 
paper contains several printing errors which have been corrected 
in the paper of Dodge and Barber, Ref. 7. The relation between 
electrodisintegration and photodisintegration has also been 
considered in a paper by R. Rodenberg, Z. Physik 158, 44 (1960). 
In this paper Sommerfeld-Maue wave functions are used for the 

approximation and has assumed the validity of the 
rather stringent condition kR<£\, where k is the 
momentum transfer and R is the nuclear radius.5 

This second assumption causes El transitions to 
dominate, and the results of Bosco and Fubini are 
valid only for these transitions. The condition kR<£\ 
is not, in fact, very well satisfied. As an example, for 
100 MeV electrons scattering on O16 the quantity kR 
is of order 1 for scattering through 37°. Although the 
majority of the electrons can be expected to scatter 
through an angle smaller than this,6 it is clearly neces­
sary to consider higher order corrections in kR to the 
result of Bosco and Fubini. The first-order correction 
will arise from the interference of El terms with E0, Ml, 
and E2 terms. 

For the case of pure El transitions, both the photo-
disintegration and the electrodisintegration cross sec­
tions are fully characterized by the same two param­
eters. These two parameters appear in each of the 
disintegration cross sections, multiplied by different 
known functions of the kinematics. This result has been 
applied to the analysis of (e,pe') data by Dodge and 
Barber.7 These authors also present an expression for 
the electrodisintegration cross section integrated over 
final electron direction, thus eliminating the necessity 
of detecting the final electron and the ejected nucleon 
in coincidence. 

For arbitrary multipoles with interference, it is to 
be anticipated that due to the transverse nature of the 
real photon some of the terms which appear in the 
electrodisintegration cross section will be absent from 
the photodisintegration cross section. The inelastic 
electron-scattering process still determines the photon 
process, but the converse is not necessarily true. More-

electron and El and Ml transitions are considered. The differential 
cross section in outgoing nucleon is not dealt with in Rodenberg's 
work. 

6 We shall use units such that # = c=rest mass of electron = 1. 
6 As a crude estimate, if the term dependent on the direction of 

the outgoing nucleon is omitted in the result of Bosco and Fubini 
(their /3=0), then 90% of the events arise from electrons scattered 
through an angle <30°, for 100 MeV primary energy. 

7 W. R. Dodge and W. C. Barber, Phys. Rev. 127, 1746 (1962). 
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over, for arbitrary multipoles it is no longer true, as it 
is in the El case, that the assumption kR<£l eliminates 
the dependence of the nuclear matrix element on k. 
This necessitates the use of some nuclear model in 
order to establish a result analogous to that for El . In 
this work, a model is considered in which the ejected 
nucleon moves initially in a potential provided by a 
nuclear core, and has some fixed total angular momen­
tum. The core is assumed to be in the same state 
initially and finally. The form of the nuclear current 
operator is left quite arbitrary, as is the form of the 
nuclear potential. Similar models have been used by 
Courant,8 and Eichler and Weidenmuller,9 in discussions 
of the El photodisintegration; these authors also make 
a particular choice of nuclear potential. The generality 
of the nuclear potential and of the nuclear current 
operator in the present work makes it not without 
meaning to consider the case of pure multipole transi­
tions of higher order than El, although no attempt is 
made here to discuss the details of the resonance-
producing mechanism involved.10 For pure multipole 
transitions a one-to-one correspondence exists between 
the parameters of the electron cross section and those of 
the photon cross section. In particular, the case of a 
pure Ml transition is studied. 

The development given below applies to the case 
of emission of a spin-J particle. The results of the very 
similar calculation for a spin-0 particle will be stated in 
an Appendix. 

II. GENERAL FORMALISM 

We consider the interaction between the electron 
and the nucleus in lowest order in the electromagnetic 
coupling constant and represent the electron by plane 
waves, so that the transition matrix element may be 
written in terms of Miller potentials as11 

where 

V=a» //M(x)^k"xJx, (1) 

a^ -±ire{u{r>')yfiu{v)W-k<?)-K (2) 

Here /M(x) is the nuclear transition four-current, (p,tE) 
is the four-momentum of the initial electron, (p',£E') 
is the four-momentum of the final electron, k=p— p' 
and ko=E—E' are the momentum and energy transfer 
to the nucleus, respectively. The use of the Lorentz 
condition for the Mpller potential and the continuity 
equation, which is satisfied by the nuclear transition 
current, allows us to eliminate the fourth components 

8 Ernest D. Courant, Phys. Rev. 82, 703 (1951). 
9 J. Eichler and H. A. Weidenmuller, Z. Physik 152, 261 (1958). 
10 Some evidence for the existence of an E2 resonance is observed 

in the experiment of Dodge and Barber, Ref. 7, who give further 
reference to experimental and theoretical discussion of this 
possibility. 

11 See, for example, Barber, Ref. 3. 

of dp and Jy, so that we may write the matrix element as 

7 = a'- [j(x)e^xdx, (3) 

where 
a'=a— a*kk/&0

2. (4) 

The differential cross section for an electron scattered 
into the solid-angle element dQ,^ and a nucleon emitted 
into the solid-angle element d£lq, assuming no polariza­
tion measurements are made, is given by 

d2a 2ir 
~— Pe'PqJ ijtv ij > 

dQ,qd£l6f ve 

where1 2 

(47re)2 1 

spin 2EEf (k2-k0
2)2 

X 2pipj+Uk2-h2)dij+ (kikj-pikj-pjki) 

k2 2p-k\ kikj 

(5) 

X I + )+ 
V h2 h2 / &o4 So" &o 

X (2(p.k)2-2P(p.k)+K^2-^o2)^2) l , (6) 

and 
1 

J ij ~ 
2ji+l m{N\ 

fji(x)eik-xdx] J JJj(x)eik^dx 1 . (7) 

In these expressions, pe' and pq are the densities of 
states for the outgoing electron and nucleon, respec­
tively, ji and Mi are the initial total angular momentum 
and magnetic quantum numbers for the nucleon, and 
N is the spin projection of the nucleon in the final state. 
The indices i and j here refer to Cartesian coordinates. 
In what follows it is convenient to use spherical compo­
nents, and these will be referred to with Greek letter 
indices.13 In terms of these quantities, the equivalent 
photon cross section is given by 

day 

d&o 
-=2irpqJij€i€j (8) 

where e is the polarization vector for the photon. If the 
z axis is placed along k, this can be written, after 
summing over the direction of polarization, as 

dtia 

z2irf>q(Jn—JZz). (9) 

12 The spinor normalization is taken to be (u*u) — 1. 
13 The spherical components of a vector V are 

and Vo=Vz, so that ViWi=VfW*. 
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In order to establish the form of the tensor / # , we nuclear matrix element is then 
examine the spherical components of the nuclear 
matrix element f J ( x ) . ^ eXp(ik.x)Jx 

[ j ( x ) . t exp(ft.*)<fc, " (4-)3/2 £ i « ( 2 / + l ) ^ ( / l X ; <*0 

where £M are the spherical basis unit vectors. The J 

product of these with the plai* waves is most con- X J°^(*)x*-«(*))• Tu"(x)jl(kx)dx 
vemently treated by an expansion in terms of the 
irreducible tensors Txi

m(x) as given by Rose.14 The = (4TT)3/2 £ il+L(2l+iyl2C(ll\; OJI) 

calculation assumes its simplest form if the z axis is 
chosen to be along the direction of k. In this case the XC(L^J; n—N, N)C(jl\J\ rnm) 
e X p a n s i ° n i S X « ^ . . F 1 - * ( f f l l U . (13) 

^e*-x= (4x)1/2 £ ^(2/+l)1/2yz(^x) The last line follows from the use of the Wigner-Eckart 
*x theorem. The reduced-matrix element is 

XC(/lA;0M)Tx^). (10) ^ , x = ( / | | ( ^ ( ^ ) J o p ^ W ) . T x K f ) i K ^ ) l l ^ } . (14) 

In terms of the model we are considering, the nuclear F r o m Eq- (7) w^ can now write the spherical compo-
transition current is written as an arbitrary current n e n t s °f the tensor 7MJ, as 
operator acting between single-nucleon wave functions (47r)3 

for the initial and final state. The initial state wave /M,= £ £ **+w ' -LX(2H-l)(2r+l)]1 / 2 

function has the form <pi(x)xtimi($)> where xumi$) *s 2ji+l IXK i'xv 
an eigenfunction of total angular momentum and its z , K'z'v K ^ " > ^ ' 
component with eigenvalues ji and wt-, respectively, 
and <pi(x) is the radial wave function. The final-state Qv*= L C(J'1X'; 0/A)C(/1X; 0v)C(LV; *»<+/*-#> # ) 
wave function is expanded in terms of eigenstates of mi 

total angular momentum as XC(L%J; Wi+y-iV, N)C(ji\fJ/; ratju) 

XC(ji\J; miv)YL>f^''-N*(4)YLm*'-lr(&). (16) 

Standard recoupling procedure14 then gives 

&,,= ( - 1 ) ^ X + L ' + J - J , ( 2 / + 1 ) ( 2 / , + 1)C(^1X'; 0/A) 

where q is the momentum of the outgoing nucleon and [~(2£+l)(2Z/+l)~l1/2 

XKH(£) is an eigenfunction of total angular momentum. XC(/1X, wJ2J J 
The index K specifies both / and L 

XC(LLfA; 00)C(XX,A; v, -y) 
/ = = M - * ' XWr(XiiAJr/; JXO^CJ ' iALj i^FA^W) . (17) 

— *' ' ^ ^ For the electrodisintegration cross section, see Eq. (5), 
= —K—1, K < 0 . this tensor must be contracted against that given in 

Eq. (6) and so it is convenient to rewrite the latter 
The expression for the spherical components of the tensor in terms of its spherical components: 

*/** = 4irL iL{L*{qx)CW\n-N, N) 
KU 

XYL»-»(q)XK«*(x), (11) 

(47re)2 1 4xf ^ 3 / fc2 2p-k 

2££' (*2-^0
2)2 3 

2**71»(£)Fi'*(0)+(ft*-fto*)—8,,+fl +—Vft*Fi"(*)Fi'*(*) 
8ir \ k0

2 k0
2 / 

- ^ ( F / ^ F ^ ^ ^ + F / ^ F x ^ ^ l H — [ 2 ( p . k ) 2 - 2 F ( p - k ) + | P ( f e 2 - W ) ] F 1 " ( ^ ) F 1 - * ( ^ ) [ • (18) 

14 M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957). The notation and conventions 
of this book are here used throughout. 
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It is thus necessary to consider five types of contractions for the electrodisintegration cross section: 

ec=|(16x2)Z F 1 - (^ )F , '* (* )G„=[1(4T)»] 1 «E W J & O , (19) 

fip -ft 

flV 

fi 

where we have used the fact that the z axis has been taken along k. For the photodisintegration cross section 
summed over photon polarization direction, it is clear from Eq. (9), that only QA and QE are relevant. The results 
of the recoupling calculations for the quantities in Eq. (19) are 

QA = ( - l )^C(nV; 00)C(flX; 00)E 2T*v;„'(A)C(XX'A; 00)P A (H) , 
A 

QB= (-iy(2X+l)1/2C(/'lA'; 00)E JT*v;„,(A)C(ZX'*; 00)JF(1/AX'; XS)(4TT)1/2£. TSA°(<Z), 
As 

Qc= (-1)1-X'(2X'+1)1/2C(/1X; 00)E(-l)A^v:)!«,(A)C(/'X5; 00)^(1Z'AX;X'5)(4T)1 /2£-TSA°(<Z) , (20) 
As 

(?j>= (-1)WI(2X+1)(2X'+1)]1 / 2 E (-l)AirXx-;»«-(A)C(r//;OO)C(ll£;OO)X(i!£A;/'lX';/lX)0£At(p,$), 
A£t 

QB= ( - l)*'-''-»*[(2X+1) (2X'+1)]1/2 £ «•».,„. (A)C(tf'A; 00)TF(rtAX'; XZ')PA(£• 4). 
A 

Here 

* W ( A ) = ( - l ) ^ ^ / ( 2 / + l ) ( 2 / , + l)[(2L+l)(2L ,+ l)]1/2C(LL/A; 00)^(Xi;A/'; J\')W(J'iAL;L'J)9 (21) 

and 
0jBAt^) = 4^ri: C(£A*; w, -w)F£w(^)FA-w(g) (22) 

m 

is the angular function discussed by Rose.16 It is further convenient to define the quantity 

(4TT)2 

Mxv;n<(A) = ZiL+l-L'-'Wl+l)(2l'+l)J/2R\n>yR<*Kw,tK.(A). (23) 
2J'<+1 «' 

Using Eqs. (5), (15), (18), (20), and (23), the cross section for electrodisintegration is seen to be 

<Pcr 2x (<W)2 1 f 
=—pe<Pq £ £ 3fw,«j'(A) 2^ 2(- l )w+A[(2X+l)(2X'+l)] 1 / 2E C(/'tt;00)C(ll£;00) 

dQ,qdQ,e, ve 2EE' (k2-k<?)2 A mn> { £ t 

XX(/£A; /'1X'; /lX)e£At(^,$)+i^2-^o2)(-l)v- r+ i[(2X+l)(2X'+l)] I / 2C(// 'A; 00)TF(/1AX';XZ') 

/ k2 2p»k\ 
X P A O M ) + ( 1 + P2(-1)XC(/'1X'; 00)C(/1X; 00)C(XX'A; 00)PA(J&-$) 

V £o2 £o2 / 

-pk(- 1)'(2X+1)1/2C(/'1X'; 00)E C(l\'s; 00)W(UA\'; Xs)(4,r)1/2^- TsA°(g) 

-M(-l)1-v+A(2X'+l)1/2C(/lX;00)ECa'X;r;00)TF(l/'AX;X'5)(4a-)1/2^-T.A
(l(g)] 

£2 | 
+—[2(p.k)»-2ft a(p.k)+ift I(*2-*o1)](-l)xC(nx / ; 00)C(/1X; 00)C(XX'A; 00)PA(J&-$) . (24) 

&o4 J 
15 M. E. Rose, Oak Ridge National Laboratory Report ORNL-2516, 1958 (unpublished). We have taken the z axis along the 

direction of the third vector of these angular functions. I t should also be noted that 

(4*- )^ . TsA° (5) = 3-^O l A 8 (p,Q). 
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For the analogous photodisintegration, the cross section summed over direction of photon polarization16 is, from 
Eqs. (9), (15), (20), and (23), 

d<Ty 

= 2 T P , I : £ MXv ;n'(A){(- l ) x ' - i , + JC(2X+l)(2X'+l)] 1 / 2C(«'A;00)^( / lAX';X/ ' ) 
d£lq wiyi' 

- ( - l ) x C ( m ' ; 00)C(ftX; 00)C(XX,A; 0 0 ) } P A ( M ) . (25) 

I t should be noted that if the field in which the ejected 
nucleon moves in the final state is assumed negligible, 
that is if f L(qoc) is taken to be real, then the consequence 
of time-reversal invariance17 is that the product of the 
reduced matrix elements R*K>i'\>RKi\ is real when 
L+L'+l+l' is even and is pure imaginary when 
L+L'+l+l' is odd. For the emission of a spinless 
nuclear particle, Eqs. (24) and (25) remain valid, but 
the definition of the quantities in Eqs. (22) and (23) 
must be appropriately modified (see the Appendix). 

I t is the quantities Mx\';zz'(A) which contain the 
detailed nuclear information in the problem through 
their dependence on the reduced matrix elements. 
These quantities, or combinations of them, constitute 
the independent parameters in the study of electrodis-
integration and photodisintegration cross sections. From 
Eq. (10), it is seen that the contribution of a particular 
multipole to the cross sections in Eqs. (24) and (25) 
is determined by selecting the appropriate values of 
X, /, X', and V, The case of /=X corresponds to an MX 
transition, while l=\— 1 gives the leading term in an 
EX transition. Terms having Z=X+1 also contribute to 
the EX transitions but are of order (kR)2 compared to 
the /=X—1 contribution. The E0 transition is present, 
of course, only in the electron cross section and arises 

from the X=0, / = 1 terms.18 Thus, in the case of a pure 
multipole transition, with the neglect of terms of order 
(kR)2, the quantities X=X' and / = / ' have fixed values 
and the same independent nuclear parameters appear in 
both the photon and electron cross section, the number 
of parameters being given by the number of possible 
values of A. The triangular relations in the cross sections 
in Eq. (24) and (25) are such that 0^A^2X, and the 
symmetry properties of the coefficients require that A 
be even, so that there are X+1 independent parameters 
for an EX or MX pure transition in both the electron and 
photon cross sections. In the presence of interference 
the number of parameters appearing in the electro-
disintegration case is in general larger than for photo­
disintegration. 

III. EXAMPLES 

A. Lowest Order Terms 

As a first example of the use of Eqs. (24) and (25), we 
shall obtain expressions for the disintegration cross 
sections to zero and first order in kR. The zero-order 
expressions is arrived at by setting / = / ' = 0 , see Eq. (10), 
which corresponds to El transitions. This gives for the 
electron cross section19 

d£lqd£le> 

2TT (47re) 
= Pe'pq 

2EE 

and for the photon cross section 

\2 1 f r 1 E2+E'2 2*0
2 1 T 

i j „ + + 0 
' kA L 2 k2-w (k2-h2)2J L 

£ o V - ( k - q ) 2 2 [ (E 'p-Ep' ) -q ] s 

2(k2-k0
2) (k2-h2)2 •]) 

d<Tym 

d£ly 
= 2wpq(a+fi sin2#g). 

(26) 

(27) 

where &q is the angle between the outgoing nucleon and the initial beam. The parameters a and $ are given in our 
notation as 

« = - (4/v3)M11;oo(0)+ (f)1/2M11;oo(2), 

/3=- ( t ) i /Wi i ; oo(2) . (28) 

The first-order correction in kR arises from considering terms with / = 0 , V =1 and 1=1, / /==0. The 1=0, V=l 
case gives the interference of El with E0, Ml, and El when X'=0, 1, and 2, respectively, and similarly for the / = 1, 
V = 0 case. The cross sections to zero plus first order in kR are given by 

d2a d2<rm d2*int 

dQ,qdQ,e> dtigdtie' d2gdQe 

16 The case in which polarization of the photon is observed may be considered by using the quantity QD with p replaced by £, see 
Eqs. (8) and (19). 

17 See S. P. Lloyd, Phys. Rev. 81, 161 (1951). 
18 A convenient check is provided for Eq. (24) by letting k —> kQ in the expression in curly brackets. From Eq. (4) it is clear that in 

this circumstance only transverse multipoles can contribute, and in particular the E0 contribution must vanish. 
19 These results have been given previously by Bosco and Fubini, Ref. 4? and by Dodge and Barber, Ref. 7. 
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a n d 
d< (Jy 

dQ,q d£lq dQiq 

The contribution to the electron cross section from the interference terms is 

<2Vnt 2TT (Awe)2 1 f r f / ife2 2p-k> 

d%dtte> ve 2EE 

l2 1 f r f / k2 2p.k\ 

ve 2EE' (k2-h2)2\ L I \ h 2 h 2 / 

k2 ) 1 / k2 2p-k\ 
+—(2(p.k)2-2^p.k+p2(^-^0

2))LB + I 1 + )[-^2p-gC+(l/v5)(3k.gp.k-Pp.g)Z)] 
hA J J \ k0

2 h2 / 
r f/ k2 2p-k\ 

-6V2(3p-kp-q-p2k-q)E-\ (2/15)1/2(5(p.g)2k^-^2k.g-2p.kp.g)+i (1 + ) 
L l \ h2 k0

2 / 

k2 2p-k> 
—+-
h2 i 

1 _ _ ) _ _ / k2 2p-k> 

i,2 > 

k2 2p-k> 

+—(2(p .k ) 2 -2£ 2 (p .k )+p 2 (F -W)) (5(k.g) 2~3^ 2)k.g+(l+^)( l + ) 
V k0

2 h2 / 

X{p-kk.g-fp.g(5(k.<z)2-&^ ^ + ~ ^ " ) F ] (29) 

while the corresponding photon cross section is It is evident from Eqs. (29) and (30) that in addition 
i int to those parameters which appear both in the electro-

7 —2TTP Y(A 1 B)h cost? disintegration and photodisintegration cross sections, 
dQq there are also parameters which appear in the former 

+^Fk cos^e(5 cos2#Q— 3)]. (30) alone. In writing the parameters in this form, it is 
rri1 . • i -i i ^ • • • ^ useful to note that 
The various irreducible tensors arising in these expres­
sions are to be found in Table I. The parameters may M\\>;ii (A)+(— l)l'+l+x+y+AM\>\.i>i(A) 
be expressed as 

.4=-(iM)Z(2x+iy/w(i,x), 
x 

B=(l/v3)L(2A+l)1/2(C(All;00))W(l,X), 

= 2(4T)2(2j i+l)-1 £ ^ i+J-L ' - J ' [(2^+l)(2/'+l)]1/2 

KKr 

X^xx';KK'(A) Re(l?Wx'tf«ix), (M) 

X which follows from the symmetry of the Clebsch-Gordan 
and Racah coefficients.20 

C= - (l/\3)£(5xo+ (1/3) (2X+ 1)1/2)N(1,X), The product of reduced matrix elements in Eq. (32) 
is linear in k to lowest order in kR, see Eq. (14), so 

D=¥12 E |~(2X+1)1/2 (VV5)8«] ^ ^ t h f1*™}™™ of t h e ^Jr1 ! n ^ , ( 3 2 ) ' 
x [_ (2—X)!(X+3)! J NyAw ano- aU the parameters A—H in Eq. (31) are 

independent of & to lowest order in kR. The & depend-
X V (, ,AJ, e n c e Q£ ^ interference part of the differential cross 

jg=i4V2V(— 1)X(2X+1)1/2 iVYlX), section is therefore explicit in Eq. (29) to this order. 
x (2—X)!(X+3)! Similarly, in Eq. (26), a and ft are independent of k to 

p___2\i2ftr(<i 2) lowest order. The integration of Eq. (26) and Eq. (29) 
5 ' ' over final electron direction is then carried out by 

G= -iy/5 E(-1)X(2X+1)1/2PF(1121; \2)N(2,\), transforming variables from cos#, where # is the angle 
between p and p', to k2. The integrals which appear are 

ff=-*Z(«x*+\/S(2X+l)1'W(1121;X2M(2JX),(31) of the form 
X rt-p+p'r kindk2 

where / n = i { .,* o^v)"2' (34) 

^ ( A , x ) = 2 * - 1 ( 4 r ) 2 ( 2 y i + i ) - 1 E * 1 + i + L ' ( - i ) - / ' - J ' . ""* 
KK' 2° In accord with the comment made below Eq . (25), it is seen 

tha t G and H of Eq . (31) vanish in the absence of a final-state 
X ( 2 / + l ) ( 2 / / + l ) [ ( 2 i l + l ) ( 2 L / + l ) ] l / 2 interaction for the nucleon. This is so for G and H, because for 

these quantities A = 2, and thus due to the presence of the paritv 
XC(LL'A',0O)W(\jiAJ';Jl) Clebsch-Gordan coefficient C(LL'A; 00) in Eq. (21), L+L' 

— even and L-\-V-\-l-\-V — L-\-V-\-\ = odd. The product i^VoAix. 
X W(J'1/2AL; L'J) Re(i?*K 'o A i x ) . (32) is, therefore, pure imaginary. 
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TABLE I. Irreducible tensors which are used in the calculation.* The arguments of the functions are understood: 
®£At(p,q), TaA°(£), with the z axis along k. 

0Mo=(2A-f l )" 2 P A (H) B2u=~¥l2(3p'U-q--H) 
e o u - 3 1 ^ . } ®22i= (15i/lQM)p-q$Xp4 

e23i = f [ 5 ( | . $ ) ( ^ - g ) 2 - | . $ - 2 ^ - ^ - g ] 
©022= (5^/2) (3(Jfe-§)2-l) 0202= (51/2/2) (3 $-pf-l) 

®222=(5/W*)(l-3p-$p-kk-q-3«qXp)-ky) 
(4nryi*P • Toi° = -p • q (Air)1^ -T1(P=p4 
(4iryi2p'T12

Q = 2-ll2(p4-3k<<ip-q) (47ryi*p>T2i
0=>2-ll2(3k'gp4-p'q) 

(47r)^P'T22°=-i(15/2y'4'q(pXq4) (^yiip.J^^ (3^/2)(2k'qp4-P'q(5(k-q)*-l)) 

* The following vector identity is useful in evaluating these tensors: {qXP'k)2-\-(p-k)i + (P'q)2-{-{k-q)i~2P'kk-qp-q — \. 

which can be generated from the recursion relations and 

h4In-2ko2In+l+In+2 7 l = 2 X + # ' , (35c) 

==(n+l)-1t(p+p')2n+2-(p-p')2n+2']. (35a) where 

The first two integrals are X = l n [ ( E E / + ^ / - 1 ) / £ 0 ] . (35d) 

Io=pp'/ko2, (35b) For the pure El transitions the integration gives21 

d<rE1 2TT2 (47re)2 1 f r £ 2 + £ ' 2 

= pe'Pq \a\ X 
d03 ve 2EE' ko2[ L pp' 

-[sin2^{X[2^0
2-3^ ,2+ (3/p2){EE'-1)2+ (12E2/p2)(EE'-~1)-&EE']- (p'/p)(4£2+3££'+5) 

2pp' 

+2\{p>2- (1/> 2)(E£'-1) 2- ( 4 £ 2 / ^ ) ( E E ' - l ) + 4 E ^ } + (2^7^)(3+EE0]} • (36) 

In the electron case, &a is the angle between the direction of the outgoing nucleon and the initial electron beam. 
For the interference contribution, the cross section is best left in terms of the integrals defined by Eq. (34). It is 
also convenient to introduce the quantity 

y=p2-p,2=h(E+Ef). (37) 

The interference contribution is 

da1** 2TT2 (47re)2 1 
= pe'Pq~ 

2EE' 2pp 
- cos t fJ (A/2p)[_yI1+I2- ( y / o + / i ) ( & o 2 + 4 £ 2 / 3 ) ] - (B/p)\ (yI1+I2)(l+—+—S) 

I L \ k0
2 2*o4/ 

1 
—(yh+h) 
lh2 

}-2CpI1(l+^)+—(l+^)\^(y2Io+2yI\+I2)^ 
J \ ko2/ V2\ ko2/L2p J 

(2/15)v*p(yh+Id (5 cos 2 ^-3)+ (5/16^3) (5 cos2^-3) (y*I0+3y2I1+3yI2+1J1+—+—) 
\ k0

2 2k0
A/ 

+ (15/4^)sin2^(y/1+/2)f 1 + — + — V (S/32*0y)(S cos2^-3)(y3/1+3y2/2+3y/3+74) 
\ k0

2 2fe0V 

- (15/8^o2^)sin2^(3;/2+/3)- (3/2p)(yI1+I2)(l+—+—) 
\ k0

2 2&oV 

+ (3/UQ
2p)(yI2+h) ^^ f l+ -^V5cos 2 ^ -3 ){ (3 /4^ 2 ) ( / / 0 +2j / 1 +/ 2 ) - / i } l} . (38) 

21 For E, FJy>l, this result has been given previously by Dodge and Barber, Ref. 7. 
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To zero plus first order in kR, the differential cross 
section in outgoing nucleon direction is given by the 
sum of Eqs. (36) and (38). 

B. Pure Ml Transitions 

In the case of a pure magnetic transition, due to the 
transverse nature of the magnetic multipole, the 
quantities QA, QB, and Qc of Eqs. (19) and (20) 
vanish (C(X1X; 00) = 0). For an Ml transition the cross 
section for electrodisintegration is, from Eq. (24), 

d2aM1 

d£iqd&t 

2ir (47re)2 

= Pe'Pq- {a[k2p2-{k*y)2 

2EE' (k2-ko2)2 

+hk2(k2-k0
2n+btk2(p-q)2+p2(k-q)2 

-2(gXp-k)2-2p-gp.kk-g 
+ i ( P - W ) ( 3 ( k . g ) 2 ~ P ) ] } . 

The photodisintegration cross section is 

fay1"1 

d% 
= 6xp9[oyfe2+&(3 (k • £ ) 2 - ft*)]. 

(39) 

(40) 

The relevant irreducible tensors appear in Table I. 
The parameters in Eqs. (39) and (40) are 

a = ( l / ^ 2 ) M n ; 1 1 ( 0 ) , 

£=(1A/6&2)M11:11(2). 

These two quantities are independent of k to order 
(kR)2. The integration over final electron direction is 
easily carried out as in Sec. IIIA and yields 

daM1 2TT2 (47re)2 1 
=—p0,Pq {2a\(p2+p'2)+b(l-3cos2&q) 

dtiq ve 2EEf 2ppf 

X[2\(l-EEf)+2pp,-(k0
2/2p2)\(2E2+l) 

+ (^ /2^ ) ( -4E 2 +3EE '+ l ) ]} . (42) 

In this pure multipole transition, the same two param­
eters, a and b, appear in both the photodisintegration 
and electrodisintegration cross sections. It will be 
observed that if the integration over emitted nucleon 
direction is carried out, then both the photon and the 
electron cross sections involve only the parameter a 

and hence are proportional to each other. Moreover, 
the proportionality factor is a known function of the 
kinematics.22 In the extreme relativistic limit, E, E'^>1: 

daMl 2TT2 (4re)2r E2+E'2 

dQa 
- = Pe'Pq-

(4flre)2r 1 
, a-
2EEfL EE' 

b /3E' E'+E'2 \ - | 
+ - ( l~3cos 2 ^) ( A) 

2 \ 2 £ EE' / J 
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APPENDIX 

In this Appendix the results will be stated for the 
case in which the ejected nuclear particle is spinless. 
The calculation proceeds as in Sec. I I , except that the 
final nuclear particle wave function [corresponding to 
Eq. (11)] is taken to be 

^ / * = 4 7 T E iHL*(qx)YL
M($)YL

M*(£). 
LM 

(Al) 

The results for the electrodisintegration and photo­
disintegration cross sections are given in Eqs. (24) and 
(25), respectively, provided that in these equations the 
following replacement is made: 

Mxx';U'(A)-^MXx';n'(A) 

(4TT)2 

2U+\ LV 
E ^ - L ' - r r - ( 2 H - i ) ( 2 / ' + l ) ] 1/2 

with 
X#*LW i?LzxiWi/(A), (A2) 

^ X V : L ^ ( A ) = ( - 1 ) ^ ( 2 L + 1 ) ( 2 L , + 1) 
XC(LL'A] 00)WQdiM,'; LV). (A3) 

Here k is the initial orbital angular momentum and 
RLI\ is the reduced matrix element. The remaining 
quantities are as defined in Sec. I I . 

2 This is the starting point for Rosenberg's calculation (Ref. 4). 


